

MECHANICAL ENGINEERING

ME Graduate Seminar

Towards Robotic Straight Razor Shaving of Humans

Peter Whitney, Ph.D.
Assistant Professor
Mechanical and Industrial Engineering
Northeastern University

Wednesday, November 6, 2019 10:00 – 10:50 a.m. Higgins Labs 218

Abstract

Safe and successful deployment of robots that directly and physically interact with humans remains a challenge. In this talk we will investigate robotic straight razor shaving of the human face as an example of physical human-robot interaction that demands the highest mechanical responsiveness, force sensitivity, and control precision. From the lessons in this task, we move to other (real) applications, including the development wheelchair-mounted haptic-grade manipulators for assistance with activities of daily living, remotely operated MRI-compatible surgical and shared-autonomy underwater manipulators for explosives ordinance disposal (EOD). Key research elements in support of these applications include soft-composite materials engineering and design, low-friction fluid actuators, and high dynamic range force feedback control.

About the Speaker

Peter Whitney is an assistant professor of Mechanical and Industrial Engineering at Northeastern University, engaged in research on human-safe, medical, and collaborative robot systems, through advances in mechanical design, soft-composite engineering, and multi-sensory feedback control. He obtained his PhD in 2012 at Harvard University, working with Prof. Robert Wood on pop-up book style micro-composite MEMS fabrication and insect-scale experimental aerodynamics, and worked as a postdoc under Jessica Hodgins at Disney Research (CMU) on human-safe robot design, which culminated in the development of "Jimmy", a human-safe mechanically teleoperated robot puppet. His research is funded by grants from NSF CHS, NSF NRI, ONR, and the ARM Institute.